Turmeric Boosts Glutathione Levels by Quinta_Essentia .....

Turmeric Boosts Glutathione Levels

Date:   2/1/2009 4:07:40 PM ( 12 y ago)

both of these studies show that curcumin, the main compound in turmeric, boost glutathione levels and protects the body against cancer.


Mechanisms of anticarcinogenic properties of curcumin: the effect of curcumin on glutathione linked detoxification enzymes in rat liver.

Int J Biochem Cell Biol, 30(4):445-56 1998 Apr

Curcumin, an antioxidant isolated from turmeric (curcuma longa), has been shown to attenuate chemical carcinogenesis in rodents. Previous studies have shown that curcumin causes an increase in glutathione S-transferase (GST) activity in rodent liver which may contribute to its anti-cancer and anti-inflammatory activities. Since the effects of curcumin on specific GST isozymes and other glutathione (GSH)-linked enzymes are incompletely defined, we have examined in the present studies the effect of curcumin on hepatic non-protein sulfhydryls and GSH-linked enzymes in male Sprague-Dawley rats. When rats were fed curcumin at doses from 1 to 500 mg kg-1 body weight daily for 14 days, the induction of hepatic GST activity towards 1-chloro-2,4-dinitrobenzene (CDNB) was found to be biphasic, with maximal induction of about 1.5 fold at the 25 to 50 mg kg-1 body weight dosage.

At higher doses, a decrease was observed in the activity and in the rats treated with 500 mg kg-1 curcumin this activity was below the levels observed in controls. In contrast, GST activity towards 4-hydroxynonenal (4-HNE) increased in a saturable, dose dependent manner. Western-blot analyses of liver cytosols revealed that curcumin caused a dose dependent induction of rGST 8-8, an isozyme which is known to display the highest activity towards 4-HNE, a highly toxic product of lipid peroxidation. Glutathione peroxidase (GPx) activity towards cumene hydroperoxide in liver homogenate was also found to be increased in a saturable manner with respect to curcumin dose. Our results suggest that induction of enzymes involved in the detoxification of the electrophilic products of lipid peroxidation may contribute to the anti-inflammatory and anti-cancer activities of curcumin.




Curcumin, an antioxidant present in the spice turmeric (Curcuma longa), has been shown to inhibit chemical carcinogenesis in animal models and has been shown to be an anti-inflammatory agent. While mechanisms of its biological activities are not understood, previous studies have shown that it modulates glutathione (GSH)-linked detoxification mechanisms in rats. In the present studies, we have examined the effects of curcumin on GSH-linked enzymes in K562 human leukemia cells. One micromolar curcumin in medium (16 h) did not cause any noticeable change in glutathione peroxidase (GPx), glutathione reductase, and glucose-6-phosphate dehydrogenase activities. [gamma]-Glutamyl-cysteinyl synthetase activity was induced 1.6-fold accompanied by a 1.2-fold increase in GSH levels. GSH S-transferase (GST) activities towards 1-chloro-2,4-dinitrobenzene, and 4-hydroxynonenal (4HNE) were increased in curcumin-treated cells 1.3- and 1.6-fold, respectively (P=0.05).

The GST isozyme composition of K562 cells was determined as follows: 66% of GST P1-1, 31% of Mu class GST(s), and 3% of an anionic Alpha-class isozyme hGST 5.8, which was immunologically similar to mouse GSTA4-4 and displayed substrate preference for 4HNE. The isozyme hGST 5.8 appeared to be preferentially induced by curcumin, as indicated by a relatively greater increase in activity toward 4HNE. Immunoprecipitation showed that GPx activity expressed by GST 5.8 contributed significantly (~50%) to the total cytosolic GPx activity of K562 cells to lipid hydroperoxides. Taken together, these results suggest that GSTs play a major role in detoxification of lipid peroxidation products in K562 cells, and that these enzymes are modulated by curcumin.


Popularity:   message viewed 7812 times
URL:   http://curezone.com/blogs/fm.asp?i=1347876

<< Return to the standard message view

Page generated on: 1/19/2021 4:08:35 PM in Dallas, Texas